Research Group Sites

  • Comparative Genomics and Genetics laboratory research interests range from comparative genomics and gene expression of neural cells in sensory organs of various organisms to the marine metagenomics of a diversity of microorganisms. The research group aims to elucidate the evolutionary origin of the neural network and its application to synthetic biology for developments of bioenergy.
  • ​We are fundamentally intrigued by living systems. Since cells are the fundamental units of life we focus on developing and applying experimental and computational techniques for decoding the dynamics of cellular regulatory circuits. To increase the resolution of those circuits our current focus is on single cell genomics using cell culture experiments and computational techniques.
  • Our research is about ​the coupling of organic electronic materials with biological systems. We aim to develop electronic devices that can interface with living systems and detect or treat diseases in ways that have not been possible before. These devices might include an implant that goes into the heart and regulates the heartbeat or when placed in the brain, via delivery of drugs or electrical stimulation, alleviates symptoms of a neurological disorder. They can as well pick up biological signals and translate these into electrical information, forming the basis of a biosensor. The success of these devices, however, depends on how well the electronics communicate with the biological system. And materials that enable communication between these two worlds are the key to building high-performance devices.

  • Led by Prof. Stefan Arold, the Structural Biology and Engineering (StruBE) research group. Prof. Stefan Arold's research is dedicated to elucidating the molecular basis of the function and (de)regulation of proteins central to cellular key signaling networks in plants, and animals.
  • Led by Prof. Carlo Liberale, the Vibrational Imaging Laboratory. Developing and applying label-free chemical imaging techniques based on vibrational spectroscopy (Infrared and Raman micro-spectroscopy) and multi-photon processes (Coherent Raman Microscopy, SHG). One of the main aims of this research activity is to unveil specific bio-chemical signatures of cancer stem cells, with a particular focus on understanding the dysregulation of their lipid metabolism.

  • Our research is focusing on developing integrated data-driven modeling systems to study and predict the circulation and the climate of the Saudi marginal seas: the Red Sea and the Arabian Gulf, and to understand the impact of these on the ecosystems health and productivity. It involves effective use and integration of general circulation models with in-situ and satellite observations, including the development and implementation of data inversion, assimilation, and uncertainty quantification techniques suitable for large scale applications.

  • The Tarek Ahmed Juffali Research Chair in Red Sea Ecology is dedicated to understanding the role of marine life in the functioning of the present and future Biosphere with a particular focus on marine ecosystems in the Red Sea, the ecology of their foundation species, and the response of marine biota to environmental drivers and human pressures. This is achieved through three main research streams.

  • The Salt Lab started in February 2013. The aim of the research program is to understand the basis for natural variation in salinity tolerance of plants such as barley and tomatoes and use this knowledge to increase the salinity tolerance of existing crops such as wheat, rice, barley and tomatoes.

  • The CTP-Lab is led by Professor Shuyu Sun (academic relationship network) of the Earth Science and Engineering Program in the Physical Science and Engineering Division at King Abdullah University of Science and Technology (KAUST). Our group works at modeling and simulation of subsurface flow and transport.
  • At DIG we aim to deepen our understanding of the subsurface, which will continue to be our main source of energy for the years to come, from clean gas resources to geothermal, all the way through to carbon storage.